
Quantifying sources of inter-model 
diversity in the cloud albedo effect 
Article 

Published Version 

Creative Commons: Attribution 3.0 (CC-BY) 

Open Access 

Wilcox, L. J. ORCID: https://orcid.org/0000-0001-5691-1493, 
Highwood, E. J., Booth, B. B. B. and Carslaw, K. S. (2015) 
Quantifying sources of inter-model diversity in the cloud 
albedo effect. Geophysical Research Letters, 42 (5). pp. 1568-
1575. ISSN 0094-8276 doi: 
https://doi.org/10.1002/2015GL063301 Available at 
https://centaur.reading.ac.uk/39368/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: 
http://onlinelibrary.wiley.com/doi/10.1002/2015GL063301/abstract;jsessionid=5924361694F073FFDF955C1DF4384EA
C.f03t02 
To link to this article DOI: http://dx.doi.org/10.1002/2015GL063301 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

https://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
https://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Geophysical Research Letters

RESEARCH LETTER
10.1002/2015GL063301

Key Points:
• Considerable diversity in sulfate load

and cloud top effective radius
in CMIP5

• A simple framework can be useful
in assessing uncertainty in climate
models

• Reducing parameterization
uncertainty is key for constraining
aerosol forcing

Supporting Information:
• Readme
• Figure S1
• Figure S2
• Figure S3
• Figure S4
• Figure S5
• Text S1
• Table S1
• Table S2

Correspondence to:
L. J. Wilcox,
l.j.wilcox@reading.ac.uk

Citation:
Wilcox, L. J., E. J. Highwood,
B. B. B. Booth, and K. S. Carslaw (2015),
Quantifying sources of inter-model
diversity in the cloud albedo
effect, Geophys. Res. Lett., 42,
doi:10.1002/2015GL063301.

Received 28 JAN 2015

Accepted 20 FEB 2015

Accepted article online 24 FEB 2015

This is an open access article under
the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and distri-
bution in any medium, provided the
original work is properly cited, the
use is non-commercial and no mod-
ifications or adaptations are made.

Quantifying sources of inter-model diversity in the cloud
albedo effect
L. J. Wilcox1, E. J. Highwood2, B. B. B. Booth3, and K. S. Carslaw4

1National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, UK, 2Department
of Meteorology, University of Reading, Reading, Berkshire, UK, 3Met Office Hadley Centre, Exeter, UK, 4School of Earth and
Environment, University of Leeds, Leeds, UK

Abstract There is a large diversity in simulated aerosol forcing among models that participated in
the fifth Coupled Model Intercomparison Project, particularly related to aerosol interactions with clouds.
Here we use the reported model data and fitted aerosol-cloud relations to separate the main sources of
inter-model diversity in the magnitude of the cloud albedo effect. There is a large diversity in the global
load and spatial distribution of sulfate aerosol, as well as in global mean cloud top effective radius. The use
of different parameterizations of aerosol-cloud interactions makes the largest contribution to diversity in
modeled radiative forcing (−39%, +48% about the mean estimate). Uncertainty in preindustrial sulfate load
also makes a substantial contribution (−15%, +61% about the mean estimate), with smaller contributions
from inter-model differences in the historical change in sulfate load and in mean cloud fraction.

1. Introduction

The interaction of aerosols with clouds causes a significant part of the total aerosol radiative forcing over
the industrial era [Zelinka et al., 2014; Shindell et al., 2013; Lohmann et al., 2010; Quaas et al., 2009] and was
attributed a low level of confidence in the Intergovernmental Panel on Climate Change assessment [Boucher
et al., 2013]. The best estimate of the net effective radiative forcing due to aerosol-cloud interactions is
−0.45 W m−2 (2010 versus 1750), with a 90% confidence interval of −1.2 to 0 W m−2.

Although there is a large uncertainty in the magnitude of aerosol-cloud forcing [Boucher et al., 2013; Zelinka
et al., 2014], its inclusion in climate models improves simulations of historical temperature [Wilcox et al.,
2013]. Forster et al. [2013] showed that this improvement is not because aerosol-cloud interactions are
tuned in models to agree with past temperature variations. Indeed, Shindell et al. [2013] showed that there is
little relationship between the magnitude of the aerosol indirect effect and the climate sensitivity, which
is in contrast with the third Coupled Model Intercomparison Project (CMIP3) generation of models
[Kiehl, 2007].

The majority of CMIP5 models use emissions of anthropogenic aerosols and their precursors from the
Lamarque et al. [2010] inventory, and many include at least the cloud albedo effect [Twomey et al., 1984].
Although the models use the same emissions, there is considerable spread in their estimates of the
magnitude of the global mean radiative forcing caused by historical changes in aerosols [Zelinka et al., 2014].
Here we aim to understand the causes of the inter-model diversity in aerosol-cloud radiative forcing and
identify the model processes that need to be improved to reduce uncertainty.

2. Diversity in CMIP5 Aerosol and Cloud Properties

CMIP5 models generally have improved representation of aerosol-cloud interactions compared to CMIP3,
with 29 out of 45 models having a representation of at least the cloud albedo effect. We use historical exper-
iments from 12 CMIP5 models (see supporting information Table S1) that include at least a representation of
the cloud albedo effect and which also archived aerosol data. Detailed analysis of the mechanisms focuses
on four models for which cloud top effective radius (re) was archived and the underlying parameterizations
have been published: HadGEM2-ES [Bellouin et al., 2007; Collins et al., 2011], CSIRO-Mk3.6.0 [Rotstayn et al.,
2012], IPSL-CM5A-LR [Dufresne et al., 2013], and NorESM1-M [Iversen et al., 2012].
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Figure 1. Change over the historical period of (a) sulfate load for 12 CMIP5 models and (b) re for nine CMIP5 models,
compared to preindustrial values. Models in Figure 1a are numbered in order of increasing preindustrial load. Focus
models for the remainder of the study are highlighted.

We relate the diversity in radiative forcing due to changes in cloud albedo to diversity in modeled aerosol,
differences in the assumed relationship between re and cloud droplet number concentration (Nd), and
differences in the modeled cloud fraction. Because very few model diagnostics have been archived, we
consider the relationships between aerosols and clouds in terms of the reported vertically integrated
sulfate load. In reality, aerosol properties at cloud base control Nds, and these properties vary among
models. However, we show in section 3 that vertically integrated sulfate load and Nd are strongly correlated.
Furthermore, changes in sulfate load account for 80% of the change in re in NorESM1-M [Kirkevåg et al.,
2013]. Given the strong correlation of sulfate load and Nd and the lack of available other model diagnostics,
we use this relationship to relate changes in aerosols to forcing among the models.

Figure 1a shows the change in vertically integrated sulfate load over the historical period (1860–2004)
versus the 1860 global mean load for 12 models. There is a factor of 15 spread in the global mean
sulfate in 1860, reflecting differences in meteorology, aerosol transport and deposition, and chemical
processes. However, the correlation between 1860 sulfate and the historical change in sulfate is r2 = 0.36,
suggesting that the causes of model diversity in 1860 are likely to be different to those that account for
diversity in anthropogenic sulfate changes. For example, additional diversity in 1860 sulfate comes from
the inclusion of dimethyl sulfide in some models and different representations of continuously degassing
volcanoes. It is not possible to quantify the contribution of each model-specific process to this diversity
based on the reported diagnostics. There are also large differences in the spatial distribution of sulfate
(supporting information Figures S1 and S2), which will affect the colocation of aerosols and clouds.
Furthermore, although all the models agree on the sign of the sulfate trends, there are large differences in
the absolute sulfate load and its rate of change (supporting information Figure S3).

Effective radius (re) is a metric of the cloud albedo effect and shows considerable inter-model diversity
among the few models for which it is archived (Figure 1b). Global mean re spans a factor 16 in 1860 (nine
models), although most models predict values between 10 and 12 μm. The decrease in global mean annual
mean re between 1860 and 2004 ranges from ≈ −0.15 μm in the IPSL family of models to almost −0.7 μm in
the HadGEM2 family (Figures 1b and S3 in the supporting information).

Here we investigate how differences in preindustrial sulfate, changes in sulfate load over the industrial
era, and differences in the parameterization of the re-Nd relationship contribute to inter-model diversity in
modeled re and hence the magnitude of the cloud albedo effect. Meteorological Research Institute-CGCM3
is excluded because sulfur from explosive volcanic eruptions is modeled prognostically, which precludes a
like-for-like comparison of the time evolution of sulfate load related to Nd in the troposphere.

3. Simple Functional Forms of Cloud Top Effective Radius

Four simple functional forms are presented, which enable the quantification of contributions to diversity
in the time evolution of re and cloud albedo in the absence of all necessary diagnostics from the CMIP5
archive. The functional forms capture the dependence of re on the vertically integrated sulfate load and are
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Figure 2. Schematics showing the change in (a) re , (b) cloud albedo, and (c) radiative forcing relative to their value when the minimum sulfate load from CMIP5 is
used. Thin lines use each of the functional forms to show changes for the whole CMIP5 range of global mean sulfate load. Thick lines highlight the sulfate loads
used in each model. (d) The maximum difference relative to the preindustrial value for each variable and each functional form.

based on the underlying equations of the four models that provided sufficient aerosol diagnostics to the
CMIP5 archive.

Differences in the way that Nd and re are calculated in models are two potential sources of inter-model
diversity in albedo forcing. We focus on the calculation of re from Nd . The parameterization of Nd from
aerosol mass or number concentration has previously been shown to be an important source of inter-model
diversity [e.g., Kiehl et al., 2000; Penner et al., 2006; Storelvmo et al., 2009]. However, two of the four models
considered here share a parameterization scheme, so there is not enough diversity of approach to address
this issue. Hence, the total inter-model diversity from the choice of different parameterization schemes is
likely to be larger than the value we report here.

Each model contains a prognostic equation for re in terms of Nd , e.g., (from HadGEM2-ES):

re =
(

3qc𝜌0

4𝜋𝜌wkNd

) 1
3

(1)

where qc is the cloud liquid water content, 𝜌0 and 𝜌w are the densities of air and water, respectively, and k
is a constant that depends on whether the clouds are over land or sea [Jones et al., 2001]. We find a linear
correlation between global annual mean sulfate load and vertically integrated Nd with r ≥ 0.98 for
HadGEM2-ES, CSIRO-Mk3.6.0, and IPSL-CM5A-LR (data were not available for NorESM1-M). Using this
linear relationship and the functional form of the equivalent equations for re from each model, we derive
equations for re in terms of sulfate load of the form

re = a + b.loadc (2)

where the values of the constants a and b are found by linear least squares regression of global mean
time series of loadc onto global mean time series of re. In the model parameterization scheme, c is the
exponent of Nd , e.g., for HadGEM2-ES this would be 1

3
following equation (1). This approach gives a very

good approximation for the multidecadal time evolution of re in the full models (supporting information
Figure S4). Further information on the parameterization schemes and the empirical constants are given in
the supporting information.
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Figure 3. (a) Global mean annual mean re in the HadGEM2-ES functional form, when HadGEM2-ES sulfate load is offset
to be equal to the 1860 load from 11 CMIP5 models. Numbers correspond to the preindustrial loads shown in Figure 1a.
(b) Eleven year running means of global mean annual mean sulfate load from HadGEM2-ES and temperature anomalies
from HadCRUT4. The period in the mid-twentieth century where temperature has previously been shown to be strongly
influenced by the coincident increase in anthropogenic aerosols is highlighted.

Figure 2a shows the relationship between re and sulfate load. The thin lines span the whole CMIP5 range
of historical sulfate loads, and each model’s own sulfate range is shown as thick lines. Differences between
the functional forms reflect differences in both the underlying sensitivity of the parameterization of the
relationship between re and Nd and in temporal trends in cloud liquid water content. Global mean re is most
sensitive to sulfate changes in the HadGEM2-ES parameterization, and least sensitive in the IPSL-CM5A-LR
parameterization (Figure 2a). However, different models also have different sulfate loads: the four models
with their native loads predict re changes over the historical period that are more similar than if a standard-
ized sulfate load was used, i.e., the inter-model diversity in historical effective radius changes is less than
would be expected from the diversity in parameterization alone.

Figure 2a shows that in all models re is more sensitive to changes in sulfate load when the sulfate load
is low [e.g., Carslaw et al., 2013], which means that for a given change in anthropogenic sulfate load, the
magnitude of the indirect effect will be larger for models with low preindustrial load. To illustrate this
sensitivity, Figure 3a shows how the historical change in re in the HadGEM2-ES functional form changes
when its own preindustrial sulfate load is replaced by those of 11 CMIP5 models. This produces a broad
range of re changes, particularly in the early part of the historical period. However, by 2004 the impact
of preindustrial sulfate loads on further changes in re is small. The higher loads in the present day result
in greater buffering and therefore a reduced sensitivity of re to further load changes, as suggested by
Figure 2a.

Although the uncertainty in the preindustrial aerosol state has a large influence on the change in re over the
industrial era, changes in anthropogenic aerosol emissions are still important for multidecadal variability in
modeled twentieth century cloud properties. In particular, re changes rapidly in the mid-twentieth century
when there is a pronounced increase in global mean sulfate loads (Figure 3b), which has a strong influence
on global mean temperature [Wilcox et al., 2013].

4. Causes of Inter-Model Diversity

To estimate the contributions to inter-model diversity in the cloud albedo effect, we vary, in turn, (i) prein-
dustrial sulfate load, (ii) the absolute change in sulfate load over the historical period, (iii) the modeled
relationship between Nd and re, and (iv) modeled cloud fraction. We use shortwave radiative forcing (sRF) as
a metric for comparing the relative contributions to inter-model diversity. An approximate sRF is calculated
from re assuming

𝜏 = 1.5L
𝜌wre

(3)

A =
𝜏(1 − g)

1.5 + 𝜏(1 − g)
(4)
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Figure 4. (a) Functional form estimates of global climate model radiative forcing, shown as a percentage of the
multimodel mean estimate. (b) Functional form estimates of radiative forcing, as a percentage of the multimodel mean
estimate, when all models are driven with the same sulfate load, showing uncertainty associated with the parameteri-
zation of the relationship between re and Nd . The experiment was repeated 4 times, driving the set of functional forms
with four different load time series, corresponding to the four data points shown for each model. (c) Functional form
estimates of radiative forcing as a percentage of the corresponding functional form estimate when (i) preindustrial load
and (ii) the absolute change in load over the historical experiment are perturbed within the bounds of the central nine
CMIP5 values and when (iii) total cloud fraction is perturbed within the bounds of 11 CMIP5 models.

based on Platnick and Twomey [1994], where 𝜏 is optical depth, L is historical mean liquid water path, 𝜌w is
the density of water, A is albedo and g = 0.85 is the asymmetry parameter, and

sRF = −F0 t2
a ΔA C (5)

following Carslaw et al. [2013], where F0 is the top of atmosphere radiative flux, ta = 0.75 is the transmission
of the atmosphere, and C is the historical mean total cloud fraction.

We assume that cloud cover does not change over the historical period. Zelinka et al. [2014] show that
aerosol-cloud interactions have little impact on cloud amount in a similar set of models. We also assume
that the total cloud fraction of all clouds is representative of low cloud, which means that our estimate
of sRF is an upper bound. The multimodel mean functional form estimate of global climate model sRF is
−1 W m−2, which is comparable to Zelinka et al.’s [2014] estimate of −1.04 ± 0.67 W m−2, based on nine
CMIP5 models. However, we do not aim to quantify the sRF due to the cloud albedo effect, only its relative
sensitivity to different sources of uncertainty.

Figure 4a shows the functional form estimates as a percentage of the multimodel mean. As can also be
seen in Figure 2d, three of the models produce very similar estimates, while the NorESM1-M functional form
produces a smaller forcing.

Radiative forcing depends on the modeled mean liquid water paths, top of atmosphere shortwave
radiation, and mean cloud fractions. The inter-model differences in these fields are sufficient that the relative
sensitivities of modeled sRF to sulfate differ from the relative sensitivities of re shown in Figure 2a. This
change in the relative positions of the models when moving from re change to sRF can be seen in Figures
2a–2c, which show equivalent schematics for global mean re, cloud albedo, and sRF. The change in the
relative positions of the models in this figure demonstrates that the sensitivity of the model response to
sulfate changes cannot be predicted by considering the underlying equations in isolation: the magnitude of
the indirect effect is determined by a combination of the underlying sensitivity of the parameterization and
the model climatology, e.g., cloud fraction, colocation of aerosol, and cloud. The additional consideration of
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liquid water path in albedo (Figure 2b) and cloud fraction in sRF (Figure 2c) reduces the inter-model spread
in the maximum differences relative to the preindustrial in the functional forms (Figure 2d).

The sensitivity of sRF to the parameterization of re versus Nd is evaluated by driving the four functional forms
with the same sulfate time series so that the only difference between them is the parameterization. Each
of the four equations is driven with each of the four model sulfate time series, corresponding the four
points shown for each functional form in Figure 4b. The results are qualitatively similar irrespective of
the sulfate time series used, although there are small quantitative differences because of the nonlinear
relationship between sulfate load and cloud albedo change. The different parameterizations produce re

changes that are between 39% less and 48% more than the mean estimate (Figure 4b). The inter-model
spread in sRF estimates is larger when sulfate loads are standardized than in the unperturbed functional
forms (Figure 4b versus Figure 4a). This suggests that the actual differences in sRF are less than would
be expected from differences in the parameterization of the relationship between Nd and re alone. This
compensation between model sensitivity and model state can be seen in Figure 2, where CSIRO-Mk3.6.0 re is
inherently more sensitive to sulfate changes than NorESM1-M (Figure 2a), but the higher preindustrial load
in CSIRO-Mk3.6.0 suppresses the re change over the historical period (Figure 2d).

If preindustrial sulfate load and the change in load over the historical period were independent, and
therefore governed by different physical processes, their contributions to inter-model diversity in the cloud
albedo effect could be quantified by varying each of them within the 95% confidence interval of CMIP5
values. However, the weak correlation between preindustrial and present-day sulfate loads (r2 = 0.36,
Figure 1) suggests that there are likely to be some shared sources of diversity. Therefore, to quantify the
effect of uncertainty in preindustrial load, we scale the variance of the load values by 0.64 and use this
reduced variance to find a reduced 95% confidence interval. Since our small sample limits our knowledge
of the distribution of preindustrial loads, we vary loads within the bounds of the actual model values that
lie within the 95% confidence interval, rather than our calculated limits. This is accounted for by the central
nine of the CMIP5 values. The same methodology is used to quantify the sensitivity of the indirect effect to
the absolute change in historical load. Supporting information Figure S5 shows a graphical representation
of load perturbations made in this section.

Perturbing preindustrial sulfate load within the range of the central nine CMIP5 values results in large
changes to the multimodel mean sRF. Using the lower bound of preindustrial sulfate load in each model
results in a 61% increase in the multimodel mean sRF (20 to 129% for individual models), while the upper
bound results in a 15% decrease in the mean sRF (maximum 40% for the individual models) (Figure 4c). The
nonsymmetric effect of the upper and lower sulfate loads is due to the buffering effect of re at higher sulfate
loads (Figure 2a).

The influence of differences in the absolute load change over the industrial era on sRF is smaller than that of
differences in the preindustrial sulfate load (Figure 4c). Imposing the minimum load change from the central
nine CMIP5 values on the functional forms results in a mean reduction in sRF of 24% (10 to 39% in individual
models). When the equations are driven by the load time series with the greatest change from the central
nine CMIP5 models over the industrial era, the average sRF increases by 5% (up to 23% in HadGEM2-ES)
(Figure 4c).

Perturbing the cloud fraction used to calculate sRF results in a linear scaling. Using the minimum cloud
fraction from 11 CMIP5 models reduces the mean estimate by 15% (7 to 28% in individual models)
(Figure 4c). Using the maximum cloud fraction increases the mean estimate by 23% (5 to 35% in individual
models).

5. Conclusions

In order to reduce the uncertainty in modeled aerosol-cloud interactions, it is important to understand
the sources of that uncertainty. Although the available diagnostic data from CMIP5 models are very
limited, we have shown that functional forms of the response of cloud top effective radius to changes in
vertically integrated sulfate load can be used to test the sensitivity of the magnitude of the cloud albedo
effect to (i) preindustrial sulfate load, (ii) absolute changes in sulfate load over the industrial era, (iii) the
parameterization of the relationship between effective radius and Nd , and (iv) modeled cloud fraction.

WILCOX ET AL. ©2015. The Authors. 6
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The parameterization of the relationship between cloud top effective radius and Nd is the largest
potential source of inter-model diversity, resulting in a multimodel mean range of shortwave radiative
forcing estimates between −39% and +48% about the baseline estimate of −1 W m−2. The actual
differences between the full models are less than would be expected based on differences resulting from
the parameterizations alone (Figure 4). Differences in sulfate load and cloud states mitigate some of the
diversity caused by different parameterizations (Figure 2). Hence, shortcomings in our understanding of
the physical processes involved may be obscured by compensating errors. It is therefore important to
consider models as a whole in order to anticipate the magnitude of the indirect effect, not just their
underlying equations.

Differences in meteorology and chemistry lead to pronounced differences in aerosol distribution and
regional loads, despite the models being driven with the same anthropogenic emissions. The resultant
diversity in the modeled preindustrial state has a large influence on the uncertainty in modeled shortwave
radiative forcing from the cloud albedo effect. Driving the functional forms with the central nine prein-
dustrial sulfate loads from 11 CMIP5 models results in a range of shortwave radiative forcing estimates
between −15% and +61% about the baseline. Perturbing the absolute change in sulfate load during the
industrial era results in a range of −24% to +5% about the baseline, making this the smallest contributor to
inter-model diversity of the processes we consider here. This result is broadly consistent with Carslaw et al.
[2013], who showed that the albedo forcing is more sensitive to uncertainties in natural aerosol emissions
(hence preindustrial conditions) than to uncertainties in anthropogenic emissions. However, the influence
of the preindustrial load on the rate of change in effective radius decreases with time, and anthropogenic
perturbations to sulfate load still have an important influence on multidecadal variability (Figure 3).

Most of the inter-model spread in the cloud albedo effect results from differences in the response of cloud
albedo to changes in aerosol, rather than differences in mean state cloud fraction. However, the influence of
the mean cloud state is not insubstantial: perturbing cloud fraction between the maximum and minimum
from 11 models changes the multimodel mean shortwave radiative forcing by between −15% and +23%
(Figure 4c), which is greater than the effect of perturbing the absolute change in sulfate load during the
industrial era. This is consistent with Zelinka et al. [2014] who found that over 20% of the inter-model spread
in the cloud scattering component of sRF due to aerosol-cloud interactions was due to differences in mean
state total cloud fraction in their subset of CMIP5 models.

The large differences between sulfate loads in models that use the same emissions, the resulting large
spread in cloud top effective radii, and the importance of cloud mean states to the magnitude of the
cloud albedo effect indicate a need to improve basic model and aerosol fields to improve estimates of the
cloud albedo effect. As in previous generations of models one of the principal sources of model diversity is
associated with the calculation of aerosol loading [e.g., Pan et al., 1998; Penner et al., 2006; Liu et al., 2007;
Quaas et al., 2009]. Consistent with Carslaw et al. [2013], it is the uncertainty in preindustrial rather than
present-day aerosol that has the greatest influence on estimates of radiative forcing.

Our results suggest that the greatest reductions in model uncertainty are likely to be made by resolving the
differences in the parameterization of cloud top effective radius and reducing uncertainty in preindustrial
aerosol load. Improvement of modeled aerosol fields relies on the availability of global observations, not just
in polluted regions but also in pristine regions that are representative of preindustrial conditions [Hamilton
et al., 2014].
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